SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR

(AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Theory of Structural Stability (20CE1010) Course & Branch: M.Tech - SE

Year & Sem: I-M.Tech & I-Sem

Regulation: R20

UNIT –I

Beam Columns

1	Derive the differential equation for maximum deflection and maximum bending moment in case of beam column with couple forces at ends?	[L3][CO1]	[12M]
2	a) Derive the differential equation of slope in case of continuous beams with axial loads?	[L3][CO1]	[12M]
	b) Derive the differential equation for beam columns with compressive force and distributed lateral load?		
3	Derive the differential equation for maximum deflection and maximum bending moment in Case of beam column with central load?	[L3][CO1]	[12M]
4	Derive the differential equation for beam columns with compressive force and distributed lateral load?	[L3][CO1]	[12M]
5	Derive the differential equation for maximum deflection and end slopes in case of beam column subjected to end couples?	[L3][CO1]	[12M]
6	Derive the differential equation for maximum deflection and maximum bending moment in case of beam column with built in ends?	[L3][CO1]	[12M]
7	a) Explain the differential equation of slope in case of continuous beams with axial loads?	[L2][CO1]	[12M]
	b) Explain the critical load conditions for a bar on elastic foundation.		
8	a) Derive differential equation for beam column?	[L3][CO1]	[12M]
	b) What are the approximate methods used in the stability analysis and discuss their merits.		
9	Derive the differential equation for maximum deflection and end slopes in case of beam column subjected to clamped/ built in ends?	[L3][CO1]	[12M]
10	Find the maximum bending moment in a beam –column on simply support & when subjected to axial load P and concentrated lateral load Q.	[L1][CO1]	[12M]

R20

UNIT –II Elastic Buckling of Bars

	8		
1	Using energy method, determine the critical load of a column with one end fixed and other end free when cross section changes at midpoint.	[L1][CO2]	[12M]
		11 011 00 01	[1 A] []
2	Derive the effect of shear force on value of crippling load.	[L3][CO2]	[12M]
3	Explain buckling of bars with varying in cross section with a suitable example?	[L2][CO2]	[12M]
4	Derive Euler's column formula for elastic buckling of straight bars?	[L3][CO2]	[12M]
5	Derive expression for critical load in case of buckling of bars with intermediate compressive forces?	[L3][CO2]	[12M]
6	Derive the critical load in case of buckling of bars with effect of eccentric load?	[L3][CO2]	[12M]
7	Derive the crippling load in case of buckling of bars with distributed axial loading.	[L3][CO2]	[12M]
8	a) With reference to equilibrium conditions explain the concept of stability of a structure.	[L2][CO2]	[12M]
	b) Explain Euler's theory of columns stability, write assumptions and limitations.		
9	Obtain the Euler's buckling equation of columns for	[L1][CO2]	[12M]
	a) One end is fixed and the other end is free		
	b) Columns with both ends fixed.		
10	Derive the crippling load for buckling of:	[L3][CO2]	[12M]
	a) Bars with intermediate compressive forces		
	b) Bars with distributed axial load.		

UNIT –III Inelastic Buckling

1	a) Explain the Tangent Modulus and Reduced Modulus theories.	[L2][CO1]	[6M]
	b) Show that the reduced modulus of rectangular cross section.	[L2][C01]	[6M]
2	Explain Reyliegh – Ritz method. Illustrate with a problem, its application with respect to the determination of critical load of a compressive member.	[L2][CO3]	[12M]
3	a) Briefly discuss buckling of straight bar column.	[L1][CO1]	[6M]
	b) Differentiate between elastic buckling & inelastic buckling.	[L1][CO1]	[6M]
4	Explain reduced modulus theory and its assumptions and also derive critical load of double modulus theory.	[L2][CO1]	[12M]
5	Derive the reduced modulus of rectangular section.	[L3][CO1]	[12M]
6	(a) Explain the tangent theory and its assumptions and also show that critical load of tangent modulus	[L2][CO1]	[6M]
	(b) Explain the Tangent Modulus and Double Modulus theories.	[L2][CO1]	[6M]
7	Explain Galerkin method. Illustrate with a problem, its application with respect to the determination of critical load of a compressive member.	[L2][CO3]	[12M]
8	Derive the critical load mathematical of stability problem using Timoshenko method.	[L3][CO3]	[12M]
9	Explain the various methods for calculating crippling load for buckling of bars in mathematical treatment of stability problems.	[L2][CO3]	[12M]
10	(a) Compare the Rayleigh-Rutz and Galerkin's method for obtaining the critical load for columns.	[L1][CO3]	[6M]
	(b) Discuss the effect of shear force on critical load of columns.	[L1][CO3]	[6M]

UNIT –IV Torsional Buckling

	101Sional Duckning			
1	Explain non uniform torsion of thin walled bars of open cross section with neat	[L2][CO4]	[12M]	
	sketenes.			
2	Derive the expression for pure torsion of thin walled bars of open cross section.	[L3][CO4]	[12M]	
3	Derive lateral buckling of simply supported beam of narrow rectangular section.	[L3][CO4]	[12M]	
4	Briefly describe torsional buckling, lateral buckling and inelastic buckling.	[L1][CO4]	[12M]	
5	Derive the question for the warping displacement for any bar of thin walled open section subjected to pure torsion.	[L1][CO4]	[12M]	
6	(a) Explain non-uniform torsion of thin walled bars of open cross section with neat sketches.	[L2][CO4]	[12M]	
	(b) Derive the expression for pure torsion of thin walled bars of open cross section.			
7	(a) Explain torsional buckling.	[L2][CO4]	[6M]	
	(b) Explain thin walled bars of open cross section by pure torsion.	[L2][CO4]	[6M]	
8	Derive the crippling load for a simply supported beam of narrow rectangular cross section subjected to lateral buckling.	[L3][CO4]	[12M]	
9	(a) Briefly describe torsional buckling, lateral buckling and inelastic buckling.	[L1][CO5]	[12M]	
	(b) Discuss the stability of plates under in plane and transverse loading.			
10	Write a short note on torsional buckling and also explain pure torsion of thin walled bars of open cross section.	[L1][CO4]	[12M]	

UNIT –V Lateral Buckling of Simply Supported Beams

	Lateral Ducking of Shipiy Supported Deams			
1	Derive the crippling load for simply supported beam of rectangular cross section	[L3][CO6]	[12M]	
	subjected to pure bending.			
2	Derive the critical value of the compressive force for buckling of simply supported	[L3][CO5]	[12M]	
	rectangular plates uniformly compressed in one direction.			
3	Derive the critical value of the compressive force for buckling of simply supported	[L3][CO5]	[12M]	
	rectangular plates uniformly compressed in two direction.			
4	Derive the expression for critical moment for a simply supported rectangular beam	[L3][CO6]	[12M]	
	subjected to pure bending.			
5	Derive the expression for extreme fibre stress at buckling for a simply supported	[L3][CO5]	[12M]	
	rectangular beam subjected to pure bending.			
6	Derive the critical value of the compressive force for buckling of simply supported	[L3][CO6]	[12M]	
	rectangular plates uniformly compressed using any direction method.			
7	Derive the expression for the maximum bending moment of a simply supported beam	[L3][CO6]	[12M]	
	of length L carrying an axial compressive force P and uniformly distributed load			
			[10] []	
8	Write short notes on		[12M]	
	a) Determine of allowable stress.			
	b) Built up columns.			
9	Write short notes on	[L1][CO4]	[12M]	
	a) Creep buckling			
	b) Orthogonality relation			
	c) Pure bending			
10	Write short notes on	[L1][CO5]	[12M]	
	a) Difference between lateral & longitudinal buckling.			
	b) Write expression for one direction of buckling of simply supported plate.			
	c) Write expression for two direction of buckling of simply supported plate.			
1		1	1	

PREPARED BY: R. NANDA NAIK Assistant Professor/Civil